Oldalak

2010. december 9., csütörtök

A matematika és a természet

A Fibonacci-számok

Azt nem tudni, hogy Leonardo Fibonacci itáliai matematikusnak voltak-e nyulai, de 1202-ben annyira elmélyült a nyúltenyésztés problémájában, hogy az eredmény egy újfajta számsorozat lett, melyet róla neveztek el. Fibonacci gondolatkísérlete szerint egy nyúlpár a második hónaptól képes szaporodni, és innentől fogva a nyúlmama havonta egy hím és egy nőstény nyulat hoz a világra. Az érési idő elteltével aztán ezek az utódok is sokasodni kezdenek, és soha nem pusztulnak el, hiszen matematikai nyulak. A nyúlpárok száma így az egyes hónapokban 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, és ez még csak egy év volt. A sorozat tagjainak rekurzív (ismétlődő lépésekből álló műveletsorozaton alapuló) képzési szabálya nagyon egyszerű (az új tag mindig az előző két tag összege), de az úgynevezett explicit képlet (a sorozat n-edik tagjára vonatkozó képlet) is ismert. Az igazsághoz hozzátartozik, hogy indiai matematikusok mintegy 50 évvel megelőzték Fibonaccit e sorozat felismerésében (aki erről nem tudott).

Természetes matematika

Számos természeti képződményben felismerhetőek az aranymetszés, illetve a Fibonacci-sorozat elemei: puhatestű-házakban (aranyspirál), napraforgóban, sőt az emberi testben is. Frctal BrokkoliA napraforgó tányérjában ülő magok spirálok mentén helyezkednek el. Az óramutató járása szerinti spirálok száma nem azonos az ellentétes spirálok számával, hanem két szomszédos Fibonacci számnak felelnek meg. Vannak más, szintén igen gyakori matematikai struktúrák is az élő és az élettelen természetben, ezek egyike a Voronoj-féle cellamintázat. Szabálytalanul elhelyezkedő síkbeli pontok esetében bármely ponthoz mindig szerkeszthető olyan sokszög, melynek pontjai (persze a határát leszámítva) közelebb vannak az adott ponthoz, mint a többihez. Az így szerkesztett síkidomok a Voronoj-sokszögek, melyek egyértelműen kitöltik a síkot. A szitakötő szárnymintázata éppen úgy Voronoj-diagram, mint a zsiráf foltjainak vagy a teknős páncéljának mintázata. A névadó Georgij Voronoj ukrán matematikus Szentpéterváron és Varsóban volt professzor a 19-20. század fordulóján, de ilyen tulajdonságú cellákkal már Descartes is foglalkozott.

A virágszirmok száma gyakran Fibonacci-szám: például a liliomnak, a nősziromnak és a hármassziromnak három; a haranglábnak, a boglárkának, a larkspurnak és a vadrózsának öt; a szarkalábnak, a vérpipacsnak és a pillangóvirágnak nyolc; a jakabnapi aggófűnek, a hamvaskának és a körömvirágnak 13; az őszirózsának, a borzas kúpvirágnak és a cikóriának 21; a fodroslevelű margitvirágnak, az útilapunak és egyes százszorszépeknek 34; más százszorszép-fajoknak pedig 55 vagy 89 szirma van. Fibonacci-spirálba rendeződnek például a fenyőtoboz és az ananász pikkelyei, a napraforgó magjai, a málna szemei, a karfiol rózsái és egyes kaktuszok tüskéi.

Az alábbi rendkívül látványos videó segítségével betekintést nyerhetünk abba, hogy miként jelennek meg a matematikai struktúrák a természetben.


Forrás: origo.hu

Nincsenek megjegyzések: